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Abstract 

This paper describes the development of a simple analytical dense gas model. It calculates the 
height, radius, and instantaneous concentration within a drifting cloud. The initial state is a 
cylinder of gas of arbitrary aspect ratio. Upon release, the cylinder collapses due to its excess 
density. The collapse generates internal turbulence which entrains air and dilutes the cioud. Within 
the core or central part of the cloud, top entrainment controls concentration decay. The core 
concentration decays as t -’ (where t denotes time). Side entrainment generates a radial transi- 
tion zone between the radially uniform core and the atmosphere. The core radius increases due to 
gravitational slumping and is eroded by side entrainment. Both the vertical and radial transition 
zones are chosen to be Gaussian. As the gravitational collapse continues, self-generated turbulence 
grows weaker. Internal turbulence, and hence entrainment, then becomes proportional to the 
ambient atmospheric turbulence divided by the Richardson number Ri where Ri is large and de- 
creasing. This causes a vertical growth proportional to t2 of the relatively thin disk. Gravitational 
slumping continues to maintain the radial growth such that R ’ - t (R is the mean radius of cloud). 
Hence, concentration decays as E -‘. As Ri falls below the critical value Ri,, the core vanishes and 
there is a smooth and gradual transition to a Gaussian puff description of the cloud. The non- 
dimensional concentration is shown to be primarily a function of non-dimensional time and a 
characteristic Richardson number. In addition to predicting the concentration field, the model 
calculates the cloud position as it accelerates from rest due to momentum entrainment from the 
ambient wind. Four data sets are used to calibrate and evaluate the model. The data are derived 
from laboratory studies at the University of Arkansas and at Colorado State University and from 
field studies at Porton Down and Thorney Island. The initial volumes of the gas clouds span eight 
orders of magnitude. Uncertainty of physical measurements and model estimates is discussed in 
detail. A mechanism for comparing modelled and measured concentrations (the ratio method) is 
used to quantify the uncertainty in a concentration estimate. Components of uncertainty are 
examined (inherent, model, observational, and input). 

1. Introduction 

This paper describes the development of a model to predict the height, ra- 
dius, concentration, and downwind location of a drifting dense gas cloud. Its 
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initial shape is cylindrical, defined by a height H, and diameter D (or radius 
R) . The cloud drifts over a flat surface of uniform roughness, and accelerates 
from rest within a stationary wind field having a neutral logarithmic profile in 
the vertical direction. The time scale within which the model has been evalu- 
ated is 1000~ (r is a characteristic time which is defined later). The use of a 
cylindrical model has several advantages: (1) It is mathematically tractable, 
(2 ) Several experiments with cylindrical symmetry have produced extensive 
data, (3) Most explosive or rapid releases will tend toward cylindrical sym- 
metry as they evolve in a windless environment. Although a wind will distort 
a cylindrical shape in reality, it is still a useful model to investigate. 

Dense gas models are important components of emergency response systems 
as well as important tools for environmental impact assessments and risk as- 
sessments. Dense gases have dispersion properties which are significantly dif- 
ferent from neutral and buoyant gases. 

The model begins as a uniform cylinder of dense gas. Pulled downward by 
gravity, it collapses, entrains air, becomes dilute, grows in volume, and main- 
tains circular symmetry. It also entrains momentum which is the mechanism 
for accelerating the cloud towards the local wind speed. We assume that during 
the initial collapse, a fraction of the initial potential energy is immediately 
converted to cloud turbulence. Entrainment is proportional to this turbulence 
which decays monotonically. Both top and side entrainment are important. 
Because the cloud aspect ratio (H/D) rapidly becomes small, top entrainment 
forms a smooth concentration distribution ranging from a maximum at the 
surface to zero above the cloud. The distribution is assumed to be Gaussian. 

Similarly, side entrainment causes radial erosion into the cylinder and also 
establishes a Gaussian transition zone. At the same time, the cylinder radius 
grows rapidly due to kinematic spreading as the cylinder slumps. The net effect 
is to maintain a core of radially invariant concentration whose radius R, de- 
pends on the relative magnitudes of the kinematic and erosion growth rates. 
In general, the core has a net growth until the Richardson number Ri becomes 
small enough to allow atmospheric turbulence to control the entrainment pro- 
cess. While the core exists, its concentration is a function of top entrainment 
and kinematic spreading. When its vanishes, the maximum concentration is a 
function of top and side entrainment alone as the cloud makes a smooth tran- 
sition to a Gaussian puff. However, the characteristic dimensions (a,, a,, a,) 
of the puff continue to retain the memory of the kinematic spreading for a long 
time. 

More detail on the cloud growth during gravitational settling is given in 
Matthias [ 11. The paper examines the properties of a dense gas cloud as it 
spreads and diffuses within an atmosphere having no wind or ambient turbu- 
lence. In a calm environment, the cloud differentiates into a central disk sur- 
rounded by a torus. The torus is transitory in nature and is eventually reab- 
sorbed into the disk. The central disk is modelled as having a core consisting 
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of a radially invariant concentration field. Surrounding the core is a Gaussian 
fringe within which the gas concentration falls to zero. The temporal decay of 
the disk concentration is slow relative to that of the torus. In the interest of 
having a simple model which can describe the major properties of a dense gas 
cloud, the torus is ignored in the present paper. The present cloud is described 
by the equations for the central disk alone [ 11. 

Since the equations in [ 1 ] are for a calm atmosphere, they must be modified 
to encompass both wind and turbulence in order to be more generally appli- 
cable. There is a large number of such models already available in the litera- 
ture. Perhaps the most extensive review was done in 1984 by Wheatley and 
Webber [ 2 ] . It examines in detail some 45 dense gas models which range from 
analytical to 3dimensional finite-difference codes. Of primary interest to the 
present paper are the simple analytical box models for instantaneous releases. 
These models have the capability of containing enough physics for describing 
the major features of dense gas dispersion such as mean temperature, density, 
concentration, height, and radius, However, because there is such a variety of 
ways for parameterizing entrainment, there are enormous differences in the 
various model solutions. 

Britter [ 3 ] finds that practically no adequate model validation has been 
applied to the 100 or so dense gas models that have arisen in the past decade. 
Furthermore, the criteria for model evaluation are not standardized. The ac- 
ceptability of an air quality model has often been determined by a visual as- 
sessment of the model curve passing through a few data points or by a com- 
parison with other model results. 

The present paper is concerned with addressing the problem of entrainment 
into a finite cloud which begins as a cylinder. In order to eliminate conflicting 
processes, we will examine only isothermal releases. The review by Wheatley 
and Webber [2] also examines entrainment expressions and experiments as 
does a review by Britter [4]. There is no consensus as to which of a variety of 
expressions is the best. The present model uses the gravitationally induced 
initial entrainment mechanism as explained in [ 11. Most entrainment expres- 
sions assume that when the initial gravitationally induced entrainment be- 
comes negligible, the entrainment velocity, v,, due to atmospheric turbulence 
can be expressed as 

v, ccq/Rip (1) 

where q is a measure of the turbulent velocity, Ri is a turbulent Richardson 
number, andp is a constant of order unity [2], 141. The concentration models, 
properly nondimensionalized, show concentration to be a function of time with 
the initial value of Ri (Rio) as a parameter. 

It is unproductive to attempt to review here the variety of the various dense 
gas dispersion models. This is adequately done in the above-mentioned refer- 
ences. Three tables by Webber [ 51 show vividly the differences of opinion, 
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degree of complexity, and deviation of solutions. We propose to use simple box 
model physics to describe the evolution of properties such as maximum con- 
centration, mean radius, and mean height. These will be considered to be ac- 
ceptable if there is reasonable correlation of model and data results between 
several parameters using several data sources. 

The key problems in dense gas dispersion modelling of an inert gas in iso- 
thermal conditions in the atmosphere seem to be (1) choosing an appropriate 
entrainment mechanism, and (2) making a smooth transition from a cylin- 
drical slab model to a Gaussian-type puff model. The former is the more dif- 
ficult problem and deals with the relative importance of top and side entrain- 
ment and with the details of the entrainment processes themselves. Turner 
[6] provides a convenient interpretation as well as a simple expression for 
vertical entrainment into a stable fluid of height H and density p. His expres- 
sion which links all the relevant variables is 

(2) 
where g is the gravitational constant, pa is the density of air, and u, is the 
ambient friction velocity. His interpretation of eq. (2 ) is that the rate of in- 
crease of potential energy of the stable layer is proportional to the rate of work 
done by the surface stress. Equation (2 ) can be written as 

where the bulk Richardson number is written as 

Ri, = (p-p&Hlp,u~ 

(3) 

(4) 

Following the development of an entrainment model based upon eq. (3 ) , the 
smooth transition of a stably stratified cloud to a neutrally stratified cloud is 
examined. Then a mechanism for evaluating the model is described and model 
results are compared to data. There are several sources of uncertainty, each of 
which is discussed. 

2. Equation for gravity front velocity 

The equation for the frontal speed of a gravity current is usually given as 

(54 
or 

or 

U, = a, (gHA ” ) ‘I2 (SC) 
where A= (p-ppe)/pa, A’ = (p-pa)/p, and A” = (p-&)/p’. The density P’ is 
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of indefinite size but is representative of the problem (i.e., pa sp’ <p). As long 
as the densities, p, pa, p’ are similar, eqs. (5) are equivalent. The constant CL~ is 
of order 1 and can be determined by experiment, The equation for Uf is central 
to the description of cloud kinematic and dispersive growth and yet its origin 
seems to be obscure. The equations have been shown experimentally to be a 
very good measure of radial growth. Perhaps because of this, eqns. (5) are 
presented almost axiomatically in most papers of dense gas dispersion. Equa- 
tion (5a) can be derived by balancing a pressure head against a form drag [ 2 ] . 
Equation (5b) is derived from conservation of mass, momentum, and energy 
[ 61. An order of magnitude analysis by Fay [ 71 in which gravity and inertia 
forces are balanced yields eq. (5~). 

It is common for the gas density to exceed the air density by a factor of four 
in controlled experiments with freon 12. The density ratio could be much higher 
with other gases. For large density differences, the frontal speed of eq. (5a) 
exceeds that of eq. (5b ) by a factor (p/p,) l/2 = (MT,/M,T) I/‘, neglecting aer- 
osol contributions to the density. M, T and M,,T, are the molecular weight and 
temperature of the gas mixture and ambient air, respectively. For reasons which 
are usually unspecified, eq. (5a) is more frequently used. However, Byggstoyl 
and Saetran [8] note that eq. (5a) is physically incorrect, since it allows a 
cloud to have a larger kinetic energy than its initial potential energy. Pursuing 
this further, the maximum possible velocity can be estimated by equating the 
cloud kinetic energy to the initial potential energy, i.e., 

where Ho is the initial height of the cloud. Furthermore, eq. (5b) can be derived 
quite simply by applying Bernoulli’s equation along a radius at the bottom of 
the cloud. 

If eq. (5b) is the correct equation for the speed of a gravity front, why is it 
not used more frequently and with greater success? Let us rewrite eqs. (5a) 
and (5b) in terms of the buoyancy b: 

and 

where b=gVA/p, b’ =gVA'/n, and cloud volume V=pR2H. If there is no en- 
trainment, V,A,A’, b, and b’ all remain constant at their initial values V,-,, &, 
4, 60, and bb respectively, and b > b' . If there is entrainment, V grows as A 
and A’ decrease. Fortuitously, b remains constant (b = bo) for a wide class of 
flows which are (i) isothermal or (ii) nonisothermal in which the gas and air 
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molar specific heats are equal and for which ground heating is negligible [ 2 ] _ 
This allows eq. (7a) to be easily integrated and accounts for its popularity. 

Similarly, if b’ can be shown to be constant, eq. (7b) can be analytically 
integrated and used with confidence with b’ = b&. Following the analysis of 
Wheatley and Webber [ 2 1, the expression for b’ can be shown to be 

where m, and M, are the mass and molecular weight, respectively, of contam- 
inant gas. Hence, b’ will be constant only under the exceptional circumstances 
of no entrainment and no heat transfer. In general, there is entrainment during 
which T and Vvary, precluding a simple integrated form for eqn. (7b). How- 
ever, as time progresses, T+ T, and V>> V,. The limiting values of b’ are then 

GM, 
bb =T,MpVO t=0 (9) 

and 

b:,=b, t-co (10) 

Most experimental dense cloud releases have had aspect ratios of order 1. The 
entrainment has been vigorous enough such that V& lOV, when t 2 502 [ 11. 
This means that b’ -+ b, early in the life of the cloud and remains equal to b0 as 
long as the radial growth is controlled by gravitational spreading (i.e., Ri > Ri,) . 
Hence, eqns. ( 7 ) are practically identical during most of the gravity flow period 
and have the same simple analytical solution. They differ only for small times 
t during which neither equation is accurate since radial acceleration of the 
expanding cloud from a state of rest is ignored. 

The characteristic time z is a measure of the time required for the acceler- 
ating density front to achieve its maximum speed. It is an important scaling 
parameter and is responsible for collapsing concentration vs. time data along 
a single curve. The expression for z is given by 

2= (Z/g& )1’2 

where A0 is the initial value of A and I= VA13 is a characteristic 
PI* 

3. Entrainment and cloud growth 

(11) 
scaling length 

When the cylindrical cloud is released at t = 0, there are several entrainment. 
mechanisms in operation. Initially, the dominant entrainment is due to inter- 
nal turbulence created by the sudden collapse of the cylinder. At the same time, 
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external ambient turbulence is attempting to penetrate the relatively stable 
dense cloud and gradually becomes more successffil as the cloud Richardson 
number decreases. Also, molecular diffusion is continually acting to weaken 
any density gradients. The latter becomes important only for small volume 
releases in the laboratory where the cloud height is small. 

The equations of the following Sections 3.1 and 3.2 are taken from Matthias 
[ 1 ] where their origins are explained in detail. They are repeated here only to 
assist in adapting them to the new material of Section 3.3. 

3.1 The concentration equations 
Gradually and smoothly, the cylinder is transformed into a Gaussian puff 

ellipsoid. Concomitantly, the coordinate system changes smoothly from a cy- 
lindrical r,z system to a Cartesian x,y,z system. The wind blows along the X- 
axis. The primary concentration predicted by the model is the maximum con- 
centration which is located at the centreline surface. It begins as a bulk value 
C, from a bulk or box cylindrical model. The spatial distribution of concentra- 
tions about the maximum is described by Gaussian relations as 

C=C,exp( -z2/2a,2) rtR, U2d 

=Cbexp( -z2/2az)exp[ - (r-R,)2/20F] r>R, 

where 

&=A 
nR2H 

while R, > 0 

2% 
= (27c)3’2a:az 

later, when R, = 0 

UW 

UW 

(13b) 

The core radius R, is given by the following quadratic equation [ 1 ] : 

R2=R,2 + (2n)1’2R,a,+2a; (14) 

The characteristic radial and vertical dimensions (sigmas a, and a,) of the 
Gaussian distributions describe the growth of the cloud due to turbulent and 
molecular random processes. The source of the turbulence is (1) the violence 
and shear of the initial cloud collapse and (2) the ambient atmosphere. Since 
the dispersive sources are independent of one another, the net magnitude of 
the sigmas can be expressed as 

a~=a~+c& (15) 

O:=O&+O:~++& (16) 

where the subscripts ‘g’ and ‘a’ refer to gravitational collapse and ambient 
atmospheric turbulence, respectively. The contribution due to molecular dif- 
fusion a, is not included in a, since it is always much smaller than the gravi- 
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tational component arg initially and the atmospheric component a,, later. The 
component sigmas on the right hand sides above will be explained in the fol- 
lowing sections. The cloud height H is related to a, by 

H= (z/2) 1’2a* (17) 

and is used in eq. (13a). 

3.2 Initial slumping and gravitational dominance 
As the cloud collapses due to its own weight, the turbulence generated by the 

collapse controls the entrainment and the evolution of the cloud concentration 
and dimensions. We assume that the same behaviour occurs initially in a windy 
turbulent atmosphere and import the required equations from [ 11. The cloud 
radius is found by integrating eq. (7a), which gives 

where a= R/l, I? 0 = RJl, and c= t/r. Top entrainment controls the concentra- 
tion within the core. The nondimensional bulk concentration Cb= C,JC, ‘is 
equal to the inverse of the nondimensional bulk volume v= V/V,. These are 
expressed in [ 1 ] as 

CbCp-l U9) 
v= (1 +c, (H*/D,)1’3P)c~ 

where D 0 = 2R,. The calibration constants cl and c2 are chosen so as to optimize 
the fit of eq. (19) to measured values of maximum surface concentrations within 
the core. With V and R established, the cylinder height is given simply by 

HP = V/lrR2 (20) 

where the subscript ‘g’ (for gravity) is a reminder that eq. (19) is a measure of 
cloud growth due to gravitationally induced turbulence and kinematic slump- 
ing. The Gaussian sigmas are given as 

0 zg = (2/7c)l’Vf, (21) 

0 rg =a#-&) (22) 

It is interesting to note that because the cloud grows radially outward as R 
and because a_ grows inward more slowly as a3R (a3 M 0.3 ), the core radius 
continues to grow indefinitely. If eq. (22 ) is substituted into eq. (14)) the 
asymptotic value of RJR is found to be 0.6. 

3.3 Effect of ambient turbulence 
Let us first consider the growth of a passive puff in the atmosphere. The 

theory of puff dispersion suggests that there are three successive stages of growth 
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in which hoc t, t3j2, and t112 as time progresses [9]. The theory of plume dis- 
persion suggests that plume growth proceeds initially as t and then later as 
tli2. These theories were derived on the assumption of a homogeneous, sta- 
tionary atmosphere. Since the real atmosphere deviates from these assump- 
tions to varying degrees, these theories are only approximated to varying de- 
grees. Unfortunately, because puff behaviour has been studied far less than 
plume behaviour, air pollution models generally use experimentally deter- 
mined plume sigmas for both puff and plume applications. 

As a dense cloud evolves and becomes dilute, its properties should asymp- 
totically approach those of a passive puff. What is the appropriate time-depen- 
dent behaviour of this target p&f? We know that the dense puff has been evolv- 
ing due to self-generated turbulence and has been resisting intrusion of 
atmospheric turbulence. By the time that the cloud is transparent to atmos- 
pheric turbulence, it has a low height relative to its large radius. Since disper- 
sion in the vertical direction has yet to be subjected to all scales of turbulence 
greater than H, it is far from the possible final tl/’ dependence. Furthermore, 
experimental measurements of dispersion in lateral directions do not seem to 
approach t ‘I2 dependence; plumes continue to grow as t, and puffs as t or t312 
[ 9 ]. At the intermediate time during which a dense puff makes a transition to 
a neutral puff, it seems reasonable that the asymptotic sigma growth rate should 
be proportional to t. This assumption is used in the present model development 
and model evaluation. However, modification of the model to use any other 
asymptotic sigma is very easy, as can be seen from eq. (32). 

The transition to neutral density occurs as the cloud Richardson number Ri 
falls below a critical Richardson number Ri, of order unity. This is evident 
from the definition of Ri as the ratio of cloud potential energy (which inhibits 
entrainment ) to ambient turbulent energy (which stimulates entrainment ) . 
Representing the asymptotic or far field sigma as Oif, a suitable asymptotic 
growth rate is simply 

doif -wu; Ri<<Ri, 
dt (23) 

which integrates to become 0. d = uits Subscript 5’ refers to one of the 3 coordi- 
nate directions and may take values of x (or 1) , y (or 2 ) , and z (or 3 ) _ In 
nondimensional form, 

where aif = Cif/l, Ui is the turbulence velocity component in the i-direction, and 
q and Ril are defined in eqs. (27) and (29). The determination of ui is in itself 
a complex problem since it is slowly varying function of travel time for a puff 
and of averaging time for a plume. We will assume that the turbulence velocity 
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approaches a stationary limit and will allow ui to adopt this limit. In practice, 
we can use an estimate or a measurement of ui over, say, a 2O-minute period. 

At the other extreme, for small time, entrainment of air due to the action of 
atmospheric turbulence is inhibited by the large negative density gradient in 
the vertical direction within the cloud. We assume that the vertical gradient 
also inhibits entrainment in the radial direction due to the tendency of the 
pressure redistribution terms in the turbulent energy equation to maintain 
isotropic turbulence [ 10 J . Equation (3 ) describes the rate of entrainment into 
a dense cloud due to mechanically generated ambient turbulence. Expanding 
this to include thermally generated turbulence, a more general expression for 
this near field component of entrainment or growth ai, is 

doi, Ri, 
-z=RiUi 

Ri >> Ri, (25) 

where the proportionality constant Ri, will be determined in order to optimize 
the fit of the model to the experimental data. The (bulk} Richardson number 
Ri is defined as 

Ri=gHA/q2 

where 

q2= (u~+u;+u;)/3 

(26) 

(27) 

is a measure of the ambient turbulent energy. Using eqs. (5a) and (7a), eq. 
(26) can be rewritten in terms of R (or a> as 

Ri= R&/d2 (28) 
where Ri, is a characteristic Richardson number based on the length 1 and is 
given as 

Ril =g& /q2 (2% 
Recause E2 is a simple function of f, eq. (25) is readily integrable when eq. 
(28) is substituted for Ri. The integral then becomes 

where 

(31) 

upon using the substitution qz/l= Rtl ‘- 1/2. We now have expressions for the 
atmospheric component of cloud growth cri, in which fi;, = & for Ri >> 1 (which 
implies t<< R&) and ei, - - Biif for Ri << 1 (or t>> Ril ) . An empirical combination 
which selects the correct function Bin or @if as time advances is 
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l/Bia = l/Bii, + l/ai:i, (32) 

For the choice of aif as given in this paper by eq. (24), the above equation 
reduces to 

(Xi, =@&/(l+$) (33 1 

For t<< R&/R&, # is small and the denominator approaches unity, allowing 
ai, to vary initially as t and then as t -. As texceeds R&/R&, 9 exceeds unity 
and ei, gradually changes to aif which describes the growth of a neutrally buoy- 
ant cloud. Alternate sigmas such as those recommended by Briggs in 1973 (see 
Hanna et al. [ 91) could be used to replace aif in eq. (32). 

Except for a,, we now have a full set of equations for the concentration field 
of the dense gas cloud in the atmosphere. If the maximum concentration given 
by eqs. (13) is divided by Co- - mJ VO, then Cj., is seen to be a function of R and 
H when R, > 0 and a function of & when R, =O. If we examine these nondi- 
mensional length variables, we see that they are functions of 6 &/Do (weakly), 
and Ril. In eq. (31)) Ri, remains as a calibration constant in order to optimize 
the fit of the predicted concentrations to the data. 

The ratio ui/q is of order unity and is practically constant. In practice, it is 
rare to have measurements of each Ui. In those cases for which the Ui are not 
known, we must rely upon an estimate of one component from a knowledge of 
the Pasquill-Gifford-Turner stability scheme or from the friction velocity u, 
or the mixed layer scaling velocity ~1,. Then, assuming that the ambient con- 
ditions are near neutral, approximate relations among boundary layer vari- 
ables are [ 11 J 

uJu* = %2/u* = 2, u,/u, = 1.26 (34) 

from which 

u,/q=uZ/q=1.13, uJq=O.68 (35) 

As long as we know one of the ui, we can estimate q from eqs. (35 ) and use 
it in the expression for Ri,. The above ratios for Ui/q can be used in eq. (24) for 
eif if the individual Ui have not been measured. Other initial conditions which 
must be known in order to evaluate the dimensional quantities of concentra- 
tion, length, and time are V,,, &pa, L&,/D,, and M, 

3.4 Effect of rnakculur diffusion 
Molecular diffusion will be important only in cases when the initial gas vol- 

ume is small or if the atmosphere is calm. If the cloud height is only a few 
centimetres and the external turbulence is small, then eventually cloud growth 
in the vertical direction due to molecular diffusion will become important. The 
one dimensional time dependent diffusion equation has as a solution a Gaus- 
sian distribution with a characteristic diffusion distance given by [ 121 
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& =2D,t (36) 

The diffusivity of air is about 1.5 x 10 -’ m2 s-l. The diffusivity of a dense gas 
cloud will be lower initially but will tend toward that of air as air is entrained. 

4. Cloud acceleration and drift 

If the near field, the cloud accelerates from zero velocity up to a steady value. 
The acceleration is proportional to the wind speed and inversely proportional 
to the cloud mass. The determination of the cloud position is difficult without 
a good acceleration and drift model and deteriorates as the cloud mass in- 
creases. Of course, the exact position becomes less important as mass increases 
if the radial extent of the cloud far exceeds the drift distance. 

The force which accelerates the cloud is a drag force of the atmosphere upon 
the cylinder. Two drag mechanisms may be important. One is caused by the 
entrainment of ambient momentum into the cloud. The other is caused by 
wind shear and wake formation which together can be referred to as form drag, 
We hypothesize that form drag is responsible for the initial motion and that 
momentum entrainment quickly becomes dominant. In the interests of sim- 
plicity, we will concentrate on a quantitative description of momentum en- 
trainment, and a qualitative assessment of form drag. This is convenient since 
the role of entrainment is an essential component of this paper. 

A bulk model for the rate of change of cloud mass is readily expressed as 
being equal to the mass entrainment rate through the top of the cylindrical 
cloud. Assuming that ambient mass of density pa and ambient momentum of 
densityp,Uare entrained with the same velocity u,, the rate of change of cloud 
mass pV and cloud momentum pU,V are given by 

-&PV) =P*ve~~2 

and 

-$(pU. V) =pa UuexR2 

(37) 

where U, and U are the cloud drift speed and wind speed, respectively. The 
above equations can be combined to give 

pv dt 
dUc= ( jy_ (I.)d(;tv) 

Assuming U to be uniform and constant, eq. (39) for the cloud speed UC inte- 
grates easily to become 
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(40) 

The evolution of the product pV is readily estimated from the expression for 
b = b0 (following eqs. (7) ) and V from eqn. (19). However, it was found ade- 
quate to simply ignore the dependence of UC upon pa/p. Since pa/p increases in 
time from 1 to &pa, ignoring it causes UC to be overestimated. The direction 
of the error (and hopefully the degree) is acceptable since we have ignored the 
effect of form drag in accelerating the cylinder. Since UC = ds,/dt, the integral 
of eq. (40) determines the position s, of the cloud centre of mass. Of several 
approximate integrals which were found for this equation, the one which agrees 
best with the data is the very simplest, i.e., 

S .=U,t (41) 

where UC takes on the local cloud velocity as given by eq. (40). Equation (41) 
is an overestimate of the position s, as given by the exact integral of eq. (40). 
However, as argued above, this may also compensate for ignoring other drag 
components acting on the cylinder. 

An improvement over a constant uniform wind assumption is a logarithmic 
wind variation in the vertical direction. If the wind speed UR is known at a 
reference height zR, then the wind speed UH at the cloud height H is given by 

UH ln W/G 1 -= 
UR ln (GZ/G 1 

(42) 

where z. is the roughness height. A reasonable mean speed for the wind sur- 
rounding the cloud and an asymptotic drift speed for the cloud is some fraction 
of UH, i.e., 

u=c3 u, (43 1 

This expression for the local ambient wind speed can be used in eqs. (40) and 
(41) to calculate the local cloud speed UC and locations s, during and following 
acceleration. The universal constant c3 was found to be 0.58 by comparing the 
model to Thorney Island data (Section 7.4). 

5. Experimental data 

Experimental data are essential ingredients of model design. They assist in 
three ways: (1) A plot of the data will often suggest an explanation of the 
physical processes which dictate the distribution of the data, (2) If there are 
several competing models to explain the data distribution, a comparison with 
data should select the preferred model, (3) The accuracy and suitability of the 
preferred model can be determined by comparing it to data. 

The data used in the present model development and evaluation come from 
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4 sources. Full scale field studies were done at Thorney Island, U.K. and Porton 
Down, U.K. Laboratory studies were done at the University of Arkansas and 
at Colorado State University in the U.S.A. 

5.1 University of Arkansas laboratory study (1983-1984) 
This study was carried out by Havens and Spicer [ 131. They studied the 

collapse of a cylindrical cloud of freon-air mixtures in a closed room with no 
ambient wind or turbulence. The initial volumes were 34, 54, 135, and 535 
litres; initial specific gravities were 2.16,2.91, and 4.19; initial height/diameter 
ratios were 0.4, 1.0, and 1.57. There was a total of 67 releases. Concentrations 
were measured continuously at several radial and vertical receptors. We have 
abstracted the maximum disk concentrations at the lowest receptors following 
the passage of the torus. These data provide us with data at an extreme Rich- 
ardson number, i.e., Ri= co. This was the first data set used in the development 
of the present model and was used to calibrate the gravitational collapse be- 
haviour [ 1 ] . 

5.2 Thorney Island full scale study (1982-1984) 
This study examines the dispersion of large freon-air mixtures having initial 

volumes up to 2000 m3. The objectives and preliminary results are described 
by McQuaid [ 141. The data which we use are maximum concentrations occur- 
ring at the lowest level (0.4 m) of each of several towers downwind of the 
cylindrical source. The data are contained in 16 reports, each describing the 
initial conditions and meteorological and concentration measurements of an 
experiment. The 16 experiments are referred to as Trials 4-19. Of these, Trials 
4,5,10, and 11 had insufficient data and are not used in the present paper. The 
remainder are used to develop and calibrate the model of entrainment due to 
ambient turbulence and the model of cloud drift. Initial conditions include 
measured values of Un and ul, uz, and us. 

5.3 Porton Down full scale study (1976-l 977) 
These studies are described in a three-part report by Picknett [ 151. Each 

experiment consists of a release of 40 m3 of a freon-air mixture over terrain of 
varying roughness and slope. Continuous concentration measurements are 
available from a very sparse network of samplers located usually on arcs 25 
and 50 m from the source. For some experiments, a portable monitor was lo- 
cated several hundred metres downwind, near the expected cloud centreline. 
The wind speed at 2 m and the friction velocity u,, are available for each ex- 
periment; turbulence data for u3 are available for some. There was a total of 42 
releases with varying degrees of success. We have used data from 30 of these 
experiments to compare with the concentration and drift models. 
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5.4 Colorado State University wind tunnel study (1980-1982) 
Of the 4 experimental studies, this one [ 161 has the smallest release volumes 

of 35,165, and 450 cm3. Wind speeds of 0.2,0+4,0.6, and 1.0 m s-l are set at a 
height of 10 cm. Using a logarithmic wind profile and the tunnel roughness 
height of 0.024 mm, the friction velocity and turbulent velocities are estimated. 
Twelve runs are used, each having about 10 downwind receptors at a height of 
2 mm. The shape of the initial volume is not a vertical cylinder like the above 
studies but is rather a half cylinder sliced through the axis of symmetry and 
lying on the flat side. The effective initial ratio of H/D is 0.5. Initial density 
ratios are all 4.17. The data are compared with concentration and drift model 
predictions and are also used to estimate the effect of vertical growth due to 
molecular effects in addition to turbulence. The concentration data which are 
presented are ensemble averages of peak concentration, each calculated from 
five quasi-identical runs. 

6. Comparison of model results with experimental data 

In this paper, we are concerned solely with bulk properties, i.e., the maxi- 
mum concentration in the cloud (eqs. 13) and the downwind location of its 
centre of mass (eq. 41) . We will examine first the maximum concentration and 
its dependence on time and characteristic Richardson number Ri, using the 
Thorney Island data. The data are instantaneous measurements of concentra- 
tion whose averaging time corresponds to that of the measuring instrument, 
i.e., about 1 s. A plot of measured concentration vs. time shows the data to be 
very irregular (Fig. 1) . What we must bear in mind is that if the trial could be 
repeated a large number of times for the same initial conditions, a smooth 
distribution of points would appear for G vs. 6 with a well defined mean and 
standard deviation. Identical field experiments cannot be replicated, for rea- 
sons of cost as well as because of the capricious nature of meteorology. Any 
algebraic model for c vs. t can only represent the mean of the distribution. 
Consequently, with a small number of measurements, it is often difficult to get 
meaningful agreement between model and measurements. 

The starting point for the model uses the equation of Section 3.2 where the 
calibration constants are similar to those in [ 11. These are cl =0.05, c2 = 0.5, 
u1 = 1.16, and a3 = 0.35. The new equations are in Section 3.3 and have a single 
constant Ri, to be determined. This critical Richardson number will be chosen 
so that the model makes the correct transition from the ‘gravitational’ mode 
to the ‘atmospheric’ mode in accordance with the behaviour of the data. 

6.1 Thmney Island Trials 9 and 18 
Data from two Trials are plotted in Fig. 1. If the mean path of all the decay 

curves from all the Trials were plotted, it would be obvious that they are strat- 
ified by the Richardson numbers Ri, or Ri,. These characteristic numbers are 
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Maximum concentration vs. time within a drifting cloud for two Thorney Island Trials 
having different characteristic Richardson numbers Rib Trial 9: Ri 1=3870 (A),Trid 18: R&=115 
(A). 

Thorney Island data 

proportional to Ho and I, respectively. Because Ho/Dow 1 for these data, Ri, 
and Ril are proportional for the Thorney Island data. In general, Ri, is the more 
important scaling parameter since only it appears in the cloud dimension gi, 
(eq. 33). Also eq. (28) shows that Ri begins as Ri,-, but soon becomes indepen- 
dent of Ho as time progresses, i.e., it forgets its initial value. 

The initial conditions in all Trials differ in wind speed, turbulence, volume, 
and density ratio. Plotted nondimensionally, these variables are absorbed into 
the new C and t coordinates such that the only remaining parameter is Ril. The 
Workbook of Britter and McQuaid [ 171 has a similar analysis in which C/Co 
is a function of x/Z and Richardson number based on U and 1. This is true only 
if qcc i_J as is the case in neutral conditions but does not hold for unstable 
conditions. 

If data from all the trials were plotted on Fig. 1, the scatter of overlapping 
data would make interpretation difficult. Instead, we have chosen only two 
trials with significantly different Richardson numbers. For Trials 9 and 18, 
Ri,= 3870 and 115, respectively. The differences in Ril are due mainly to dif- 
ferences in q 2, i.e., stable conditions during Trial 9 and neutral conditions dur- 
ing Trial 18. The larger Ril of Trial 9 implies that the cloud has a larger initial 
stability and will require a longer time fbefore Ri falls to Ri,. The value of Ri, 
which produced the best model-data agreement was 0.05. For the Porton Down 
data, it was 0.2. As a compromise, we will use Ri, = 0.1 for all runs in this paper. 
The resulting model curves in Fig. 1 show reasonable agreement with the data. 
Initially, we assumed that the breakpoint in the slope of the model (or data) 
was the transition point from the dense slumping behaviour to the neutral 
Gaussian behaviour. The slopes change from - 1 to - 3 as would be expected. 
Upon examining the values of Ri, azg, and a,, in the numerical printout, it was 
noted that the breakpoint occurred when rrza= ozg at a time t,. At this point, Ri 
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is still larger than Ri, and the core of radius R, still exists. Since a,, was growing 
as t2 (eq. 30)) and since R 2 was growing as t (eq. 18), then from eq. (13a), the 
concentration would fall as t - 3. The breakpoint &then corresponds to the time 
at which ambient turbulence begins to dominate the vertical entrainment 
process. 

6.2 Stratification by Richardson number Ri, using all data 
According to the model results, the core did not vanish nor did Ri drop below 

Ri, for any of the Thorney Island Trials. This means that the transition from 
gravitationally controlled dispersion to Gaussian dispersion is a long and grad- 
ual process. Numerical output from the model suggests that the core radius R, 
vanishes at about the same time that Ri falls below Ri,. The time t, when this 
occurs can be estimated from eq. ( 28). This second breakpoint is clearly visible 
on the model solutions for Ri 1 = 10 and 100 in Figs. 2. It occurs as the concen- 
tration model changes from eq. (13a) to eq. ( 13b ). The previous breakpoint 
occurs at time t, found by equating crz9 and a,,. A third time of interest is the 
time t@ when # grows to unity in eq. (33). This is the time beyond which there 
is a gradual transition to a Gaussian distribution. Solving for all these times, 
we then find that 

Rp4 
g x 0.15- 

Ril - Ri, 
Ril/z’ t, = 0.25- 

c Ri, ’ 
I$) m 0.5F 

C 
(44) 

The times 6 are plotted on Fig. 2 (d). 
The nondimensional form of the model shows that e is a function of tand 

Ril, and is a very weak function of I&/D,. In plotting model results in Figs. 2, 
we assume that the aspect ratio I&/D 0 = 1. (There is very little change in the 
curves if the aspect ratio is changed by an order of magnitude to 0.1). Six values 
are given to Ril ranging from 1 to 105. As a qualitative means of judging the 
model performance, data from all four experiments are plotted as well. To ex- 
amine the dependence upon Ril, each of Figs. 2 contains only those data whose 
initial Ril vary by one order of magnitude. The range is indicated by the solid 
lines. Fig. 2 (a) contains the lowest group of Ri,, ranging from 10 to 100, in 
which the solid lines enclose the data reasonably well. The two breakpoints 
(where the slope changes), located at times t, and t,, are visible on the curves 
labelled by Ri I, = 10 and 100. The increase in slope beyond the second break- 
point occurs as the core radius R, vanishes. The concentration equation (13b ) 
takes over from eq. (13a). The increase in slope is due to the ati which have a 
t2 dependence but which are gradually changing to t. The data are not suffi- 
ciently numerous or accurate to know whether the second breakpoint is real or 
just a function of this particular model. 

There are many more data in the next higher range in which 100 c RiL < 1000 
(Fig. 2b ) . The scatter is large, especially for the Porton data. The model tends 
to overpredict the concentrations for smaller values of E The trend is similar 
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Figs. 2. Maximum concentration vs. time. Data are from Havens and Spicer (0 ), Meroney and 
Lohmeyer ( + ), Thorney Island ( A 1, and Porton Down ( 0 ). Ranges of characteristic Richard- 
son numbers in each Figure are: (a) 10tRi,c lo’, (b) 102tR&< 103, (c) 103c Ri,< 104, and (d) 
Ri,> 104. The symbol (a 1 marks the time t,+ at which #= 1 (eq. 44). 

for the next higher group of Ri, (Fig. 2c ) , with the model continuing to over- 
predict at lower values of E Results from the most stable clouds are plotted in 
Fig. 2 (d) and include values of Ril ranging from lo4 to infinity. The Havens 
and Spicer data [ 131 have infinite Ril since the ambient turbulence is negligi- 
ble. The Meroney and Lohmeyer experiments [ 16 ] have the smallest initial 
volumes. They do not seem to be significantly affected by molecular diffusion 
as the results are within the normal range of scatter of the other data. 

The model seems to do a reasonable job in explaining the dependence of 
concentration Cupon cand Ril. The accuracy of the solutions will be discussed 
in Section 7. We know that the dense gas solutions converge to Gaussian so- 
lutions as t increases. The Gaussian solution plots as a single line using its 
natural nondimensional coordinates whereas it retains an additional depen- 
dence upon Ril using the coordinate t/z. Using a nondimensional time of g = t/ 
r, where z, = Z/q, the Gaussian solution can be written as 
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2 
c= (2n)3’%4&Tz + 2 

where 

u. - q =i=“t, 
1 Q 

135 

(45) 

The possibility of a mixed layer of limited height is ignored in this treatment. 
The relation between z and z, is 7% = r2Ril. The dense gas solutions on Figs. 
2 (a-d) and the Gaussian solution are plotted in Fig. 3 as functions of &, and 
Ri,. The dense gas solutions are seen to converge less rapidly to the Gaussian 
solution as Ril increases. Figs. 2 (a-d) are useful for analysing dense gas be- 
haviour because they stratify the data conveniently as a function of Ri,. Figure 
3 compresses the dense gas portion of the cloud’s evolution but shows that for 
&, beyond 10, the maximum concentration c does not vary by more than an 
order of magnitude above the Gaussian value, regardless of the value of R&. 

The use of a graph such as Fig. 3 offers a reasonably way to estimate the 
maximum concentration within an initially dense puff as it travels in time. It 
would be interesting to add the mixed layer depth as a parameter. Note that 
the concentrations are double valued as a function of Ri,. Around t/z, x 1, for 
example, the concentration increases as R& increases from 0 to 1 because the 
increased stability dampens turbulence and entrainment. Then as Ri, increases 
further, the concentration decreases because of the enhanced turbulence and 
entrainment due to gravitational collapse. 
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10 

Fig. 3. Maximum concentration vs. time for a variety of dense clouds and a neutral density cloud 
(Ri, = 0 ) using the natural time scale q., of the neutral density cloud. 
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Fig. 4. Predicted heights at which the cloud concentration falls to 10% of the ground level concen- 
tration, plotted against time. They are produced using characteristic initial Richardson numbers 
of Ri,= 125, 190, 330,525, 1000, 2000, and 4000. These Ri, correspond approximately to Trials 
(14, 15,181, (13,161, 19, (6, 7,8), 17,12, and9, respectively. 

6.3 The 10% height 
Once the maximum concentration is known from eqs. (13 ), it is a simple 

task to calculate the off-axis concentrations using eqs. ( 12). Off-axis concen- 
trations are not of particular interest to this paper. However, Brighton [ 181 
has used vertical measurements of the Thorney Island concentrations to esti- 
mate the height at which the concentration is 10% of the ground value. These 
heights (ZIol ) are plotted against a nondimensional time & in Brighton’s 
study which differs slightly from the i: used in this study, i.e., 
- 
tn =4.6 (Ic&,/D,)~‘~~ (47) 

The 10% heights are calculated using the present model and are presented in 
Fig. 4. The present model has a minimum value of Zion of about 1.5 m whereas 
Brighton’s estimated minima vary from 2 to 4 metres. Otherwise, the general 
behaviour of ZI,-,% as a function of Ri, is the same. 

7. Uncertainty 

A model is an approximation of reality, and as such has a degree of uncer- 
tainty. Observations also have a degree of uncertainty. Since observations are 
usually the standard against which a model is evaluated, observational errors 
complicate the process of model evaluation. 

An instructive analysis of uncertainty is given by Venkatram [ 191. He sug- 
gests that the major contributors to uncertainty are (1) errors in model phys- 
ics, (2) errors in model inputs, (3) errors in observations, and (4) inherent 
uncertainty. Most laboratory and field studies generate high quality data under 
well defined initial and boundary conditions which should minimize error #3. 
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Some of these data are used as input to the model (meteorology, initial volume 
and density, etc. ) and should minimize error #2. All these errors will be dis- 
cussed in more detail in the following sections. 

We are interested in the accuracy of the modelled cloud radius, height, drift 
distance, and concentration. These items are interrelated and so most effort 
will be spent on evaluating a single item, i.e., the concentration predictions. 
The concentrations are referred to as instantaneous but in reality are averaged 
over a time interval of about 1 s. 

7.1 Observational and inherent uncertainty 
In the four experimental studies which are referred to in this paper, we as- 

sume that the instrument error is negligible. Since we are interested in peak 
concentrations, it is essential for the monitors to be located along the cloud 
centre-line. In the two full-scale studies, it is more difficult to be assured of 
this, since the wind is capricious and the monitor network is of limited reso- 
lution. The monitor location can only err in one direction, i.e., off the peak or 
towards lower concentrations. We assume that observational errors may be 
biased towards lower concentrations. 

Inherent uncertainty is due to phenomena beyond our control or beyond our 
ability to resolve in a model, i.e., atmospheric turbulence. It can be studied by 
releasing a pollutant repeatedly under ‘identical’ initial conditions in a labo- 
ratory study. Observations show that the concentration traces at the same 
receptor always differ from one another. After a large number of quasi-iden- 
tical experiments, it becomes evident that the traces form a distribution. A 
minimal but often adequate description of a distribution is afforded by the first 
two moments of the concentration, i.e., the mean and standard deviation. The 
distribution of particular interest in this study is that of the instantaneous 
concentration maxima at a given receptor. The average of the maxima is the 
ensemble mean; the standard deviation is the unresolvable or inherent uncer- 
tainty. By defining the distribution, the probability of any concentration oc- 
curing at the receptor can be estimated. 

Inherent uncertainty is independent of the model. It is a measure of our 
inability to completely specify or control the initial state and boundary con- 
ditions of any experiment. The best that we can do is to define mean initial 
and boundary conditions (wind speed and direction, etc. ) . Let us label these 
resolvable parameters collectively as cw; the remaining unresolvable turbulent 
parameters are labelled as fi (Venkatram [ 191) . Although it is virtually im- 
possible to repeat an experiment in the atmosphere having constant cr, such 
an experiment can easily and cheaply be repeated in the laboratory. For arbi- 
trary conditions a! and /?, a single concentration measurement C, (a@) can be 
represented as 

cO(cr*B)=cO(~) +%b(a) +Coi(%fl) (48) 
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The term Co ( ac ) is the ensemble average (averaged over #3) of actual peak con- 
centrations, and c& ( cy ) is a mean observational error which biases the obser- 
vation. The most likely bias is to measure a concentration below the peak value. 
The random component or inherent uncertainty is coi (a,fi) m (In this section, 
C,, is the observed concentration and should not be confused with the initial 
concentration C, mentioned in earlier Sections.) The a-parameters are time- 
averaged long enough so that their values are quasi-stationary. Although the 
boundary conditions are quasi-steady, the growth and translation of a gaseous 
puff are not. From the time-varying instantaneous concentrations at a fixed 
receptor, time-averaged concentrations or dosage calculations can be made. 

A single experiment allows us to measure C, (a$) at each receptor but the 
results have limited meaning. Several experiments in which the a! are fixed 
allow us to determine the distribution of C, (a#). The observed ensemble mean 
CL (CY) differs from the true ensemble mean C, (cu) by the bias error c&( a!). 
The observed ensemble mean, found by averaging over all fi, is 

G(N = <W&B) >p=CoW +%I(~) 

from which the observed variance is 

(49) 

(50) 

It is reasonable to assume that the random component c,i(aC,fl) attributes 
its magnitude to the ensemble mean C, (cu) and its fluctuations to a purely 
random function aoi (8) of order unity, i.e., 

Keeping c~ constant, and averaging over all p, eq. (50 ) becomes 

(51) 

(52) 

where I’ is the normalized inherent uncertainty in the measured concentra- 
tion. The ratio of the standard deviation to the mean is a measure of the rela- 
tive error in a concentration estimate. In statistical literature, it is also referred 
to as the coefficient of variation or coefficient of dispersion. Since it was as- 
sumed that o,;(p) was not a function of a, I’ should also be constant for all cy. 

7.2 Model uncertainty 
A concentration estimate is a function of the physics contained in the model. 

Complex models treat turbulence explicitly, using random walk or large eddy 
simulation techniques. Simpler models are functions solely of mean or smoothed 
properties and as such provide an estimate of the ensemble average concentra- 
tion C,(LY). The model concentration is unchanged if the smoothed input pa- 
rameters ~1 are unchanged and can be represented as C, ( cy ) . The model in the 
present paper estimates instantaneous concentrations at any point within a 
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finite dense gas cloud. In general, the model concentration will differ from the 
observed ensemble by a model bias c,~ cy ( ) which is a function of (Y, i.e., 

The smallness of the model bias determines the accuracy of the model in pre- 
dicting the ensemble average. 

7.3 Model evahtztbn 
At this point, it appears that the evaluation of the model output C,(a) 

should be done by comparing it to the ensemble mean of the observed concen- 
trations C,, ( a! ) . There are two problems outstanding. Firstly, we are rarely able 
to collect enough data with constant ac such that we can calculate the ensemble 
mean. Such an approach would render useless the enormous collection of 
C,(@) data in which a! varies from run to run. Therefore we will make a 
comparison between C, (a) and C,, (cr,fl) and attempt to interpret the results. 
Secondly, there is a variety of opinions on how the comparison should be made. 
An American Meteorological Society (AMS ) workshop on model performance 
evaluation [20 ] recommends the basic statistical variable to be the concentra- 
tion difference C,- C,. A more recent AMS publication on emergency re- 
sponse recommends the comparison to be made using the ratio CJC,, [ 211. In 
the latter approach, the goal is to determine the distribution of the ratio from 
which useful statistics can be generated. Since concentrations may vary over 
many orders of magnitude in any experiment or industrial accident, the con- 
centration difference C,- C, will also vary over many orders of magnitude, 
even for a good model. The ratio method, on the other hand, should transform 
all the data to order unity from which useful statistics should result. The ratio 
method is used in the present paper. 

The ratio 9’ = 9 (cu,~) =C,(a!)/C,(a$) is one element of a distribution 
whose properties we hope to define. Using eqs. (48) and (53 ) in the ratio and 
assuming all the error terms to be small, the denominator of W (a,/?) can be 
expanded as an infinite series. Retaining only first order terms, we have 

(54) 

If C, (cr,/?) is measured many times under identical conditions LY, the ensemble 
mean of the ratio can be calculated directly from the data, or can be expressed 
analytically as 

Using eqs. (54) and (55)) W (a.$) can be approximated by 
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Using eqs. (51), (52)) and (56), the variance of 8 (a$) for fixed a is 

a2,,(a)=<[~(a,B)-w(CX)]2)8~~2((Y)1’2 (57) 

Since a! has been held constant, the only source of uncertainty at this point is 
the inherent uncertainty of turbulence, as shown in eq. (57). Knowing the 
mean and variance of ~3 (c@) for specific conditions ac, we have an estimate 
of the distribution of CO (a$) for a given model estimate C, ( ~1) . 

It is neither practical nor possible to make repeated measurements for all 
combinations of LX What are the implications then for the data from a full- 
scale field study in the atmosphere in which conditions cy are rarely repeated? 
The transformed data 9 (ar,/?) can be considered to be a very sparse sample of 
a larger distribution in which both a! and p are varying. If we now calculate the 
mean and variance using all data, averaging first over fl and then over cy, we 
find that 

w=<a(cu,8)>B,LY=(~((a!)>* 
and 

(58) 

=<(w(~,s)-~(cy))2>+<(~(cy)--~2> (59) 

~{~2(cy)>1’2+(~2(,)>-~2 

In practice, it is a straight-forward process to find the mean W and standard 
deviation G &, of all the ratios g (cuJ?). The model can now be applied with 
some precision in environmental conditions similar to those of the calibrating 
experiment. Assuming that the observational errors c&((w) were negligible (eq. 
49)) then for an instantaneous concentration estimate C, (LY ), we can estimate 
the true ensemble mean C, (a!) to be C, (~1) /3. The standard deviation of 
concentrations CO (a$) about CO (cu) is CO (a) gal / 3, providing the ratio ogpr / 
W is small relative to unity. 

Rewriting eq. (59 ) , we have 

~~<a2(a)>I,2+<a2((u)>--2 
w2 B2 g2 (60) 
cm (I21 (M2+Oa) 

The left side can be described as the normalized total variance T 2 in a concen- 
tration estimate. The first term on the right is the normalized inherent vari- 
ance I’. The remaining term combines the normalized variances M2 due to 
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model imperfections and 0’ due to observational errors. Expressing eq. (60) 
in this alternate form, we have 

T2=P+M2+02 (61) 

In reality, for given cy, there is a dense cloud having an ensemble mean peak 
concentration C!, ( CX) with a standard deviation C,( CU)~. Using a model to pre- 
dict C, (a ) over a range of a! increases the uncertainty in C,, ( cu ) since the model 
performance (as well as observational errors) may vary with a. This uncer- 
tainty is expressed by the second term on the right side of eq. (60) (equivalent 
to M2 + 02). In addition, the inherent uncertainty is modified slightly from I’ 
to I. In eq. (60) 1’ or I express the uncertainty in specifying C,( CU,~); M and 
0 express the uncertainty in specifying C,(a). Hence the total standard de- 
viation 2’ describing the range of C, (cu,j3) about C, ( (x ) is increased as given by 
eqs. (60) or (61). 

In cases when ~7,~ / 8 is large, a normal distribution calculation for C, (a$) 
will contain negative concentrations. To avoid this, it is preferable to use log 
W’ (base 10) or ln 9’ (base e) instead of 9’ = 9 (cu,fl> as the statistical vari- 
able. Both 9’ and log 9’ were used throughout the analysis. Judging from 
estimates of skewness (third moment ) and kurtosis (fourth moment) as cal- 
culated by the SAS@ software, the log 9 ’ variables are usually closer to a nor- 
mal distribution than the $9 ’ variables. The observed concentration distribu- 
tion can be derived from the mean and variance of log 9’ in the same way as 
for 2’. The means and standard deviations of the two distributions are simply 
related if the normalized standard deviation is small. Suppose A is a variable 
such that a typical instantaneous value is given by 

A=<A)+dA (62) 

where (A) is the mean, 6A is the random component, and 6A/<A> is small. 
By taking the logarithm of both sides, and expanding the right-hand side in 
terms of the small parameter &A/ < A > , one can show that 

(InA} xln(A> (63) 

Var(lnA) wVar(A)/<A)2= (oJ<A>)~ 

where Var (A ) is the variance of A. 

7.4 Model evaluation results 
The normalized standard deviation aA/ (A > is a useful measure for compar- 

ing the relative uncertainty among distributions having different magnitudes 
of <A>. Note that it is comparable to the standard deviation of the natural 
logarithm of A which one would expect to be independent of the magnitude of 
A. Table 1 contains a summary of the concentration results for the four data 
sets. The mean and standard deviation of W’ and log 93 ’ are presented. These 
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TABLE 1 

Summary of means and standard deviations for N values of the concentration ratio 
W’ = B? (a$) = C,( LY ) /C, (cr$) . (HS = Havens and Spicer, ML = Meroney and Lohmeyer, 
TI = Thomey Island, and PD = Porton Down) 

HS 134 0.98 0.31 - 0.027 0.132 
ML 119 1.90 0.60 0.220 0.217 
TI 123 1.14 0.59 -0.029 0.296 
PD 84 2.93 0.96 0.283 0.416 

are the minimum statistics which allow us to calculate the probability of ex- 
ceeding a given concentration at a given location, assuming the distribution of 
3 or log 9’ to be normal. The standard deviations in Table 1 are a measure 
of the uncertainty in our knowledge of a specific C, (a$) relative to the ensem- 
ble mean estimate of C,. 

The mean of the concentration ratio W’ is similar to a bias calculation in 
that B! > 1 implies overprediction and 2 < 1 implies under-prediction. Here we 
see that B is close to unity for the Havens and Spicer (HS) data and for the 
Thorney Island (TI) data. Agreement with the HS data is not surprising since 
the model was calibrated to the data and describes the effects of gravitationally 
generated turbulence. This HS calibration worked quite well for the TI data 
during the slumping phase. In addition, the TI data were used to calibrate the 
model at the later stage when atmospheric turbulence becomes important. The 
uncertainty is larger using the TI data presumably because atmospheric con- 
ditions are much less uniform than laboratory conditions and because they 
contain additional influences (wind, ambient turbulence, etc.). Also, there is 
a 14% overprediction. One possible explanation is that some of the masts in 
the monitoring network may have missed the cloud centre (maximum) as it 
drifted by. Another is that the receptor, 40 cm above the ground, may have 
been too high to detect the maximum. 

The remaining two data sets were not used to calibrate the model and so can 
serve as an independent judge of model performance. Unfortunately, they have 
some drawbacks which hinder this role. The model overpredicts by a factor of 
2 relative to the Meroney-Lohmeyer (ML) wind tunnel data. The clouds, which 
are only a fraction of a litre initially, fall to a minimum height measured in 
millimetres. Molecular diffusion in the vertical direction probably dominates 
turbulent diffusion at this point and causes a volume growth greater than that 
predicted by the model, which neglects molecular diffusion. Consequently, ob- 
served concentrations are less than modelled concentrations. Uncertainty is 
comparable to that using the TI data. 

Model performance deteriorates with respect to the Porton Down (PD ) data. 
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The initial and boundary conditions are similar to those of TI, although the 
PD initial cloud volume V, is 40 m3 relative to the 2000 m3 of TI. However, the 
much greater volume differences between the ML laboratory studies and the 
TI studies do not seem to cause a strong a difference in model performance. 
The large over-prediction of W may be due to the very sparse monitoring net- 
work that simply fails to locate the central portion of the puff. In addition, the 
rougher surface may trap pockets of gas, causing a net loss of mass from the 
cloud. To determine the reasons for discrepancies would require a thorough 
examination of experimental conditions and results. The uncertainty oBI/9 
is also much larger. 

Figures 5 display the data that are summarized in Table 1. The figures give 
a qualitative assessment of the model performance. They also suggest the min- 
imum criteria for a good model performance. These are: 
(a) 
(b) 

Cc) 

W 

( 9 ’ > = < C, ( LY ) /C, (crJ3) > x 1, averaged over all data. 
The local mean of S?’ is not a function of the choice of a (t/z in this 
case). 
The local variance a& ( a ) is not a function of the choice of cy (t/7 in this 
case ) . 
M and 0 are small relative to 1. The standard deviation I (or 1’ ) is not a 
problem since it is a property of nature and represents information as 
well as uncertainty once it is determined. 

In general, it seems plausible that the local variance could be a function of (Y. 
In Figs. 5, the local variance of CJC, (a,/?) is fairly uniform over the range of 

Figs. 5. The ratio of modelled to observed concentrations for several experiments. In (c), the model 
is run with ( + ) and without (0) molecdar diffusion. 
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t/r. This simplifies the application of the model since a single variance can be 
used regardless of the value of LY. 

In the process of calibrating the model using the HS and TI data, calibration 
constants were chosen so as to satisfy criteria (a) and (b) . There is no control 
over the variance except to maximize the quality of both the model and the 
data. A comparison with the TI data (Fig. 5a) shows that all the criteria are 
upheld reasonably well except for (b), i.e., there is a gradual decrease in the 
local mean of C&/C, (a,/?) as t/z increases. This is due primarily to the choice 
of Ri, as 0.1, which is an compromise between the optimum values for the TI 
data (0.05 ) and the PD data (0.2). In retrospect, the TI data seem much better 
than the PD data and so more weight should be given to the former results. 
For example, if Ri, is reduced, the transition to rapid cloud growth is delayed 
and model concentrations would be higher at larger times. This would improve 
agreement with criterion (b) for Fig. 5(a) but would increase the value of 
< 9 ’ > further above unity (violating criterion (a). Criterion (b ) is probably 
more important, however. 

The variance is largest for the PD data (Fig. 5b ) . Even for small values of 
t/r, where concentrations should be close to their initial values, the model 
grossly overpredicts. Using the ML data (Fig. 5c ) , the model fails conditions 
(a) and (b). If molecular diffusion is neglected (o), the local mean begins 
below 1 and climbs to about 2. If we modify the model so as to allow additional 
vertical diffusive growth by molecular action as given by eqn. (36), the local 
mean ( + ) climbs to a maximum of 1 and then falls. This simple modification 
does not improve the performance. 

The best performance occurs for the HS data of Fig. 5 (d) and satisfies all 
four of the above criteria. However, the HS data conditions are rarely experi- 
enced in practice (zero wind, zero ambient turbulence). 

Our goal is to be able to predict a distribution of real concentrations, given 
a model concentration. A real distribution is characterized by its mean and 
inherent uncertainty (CJ’ ) . A predicted distribution is characterized by the 
mean and a broader uncertainty (C,,T) . The broader distribution results from 
the fact that the model does not predict the mean C,( cw) correctly over the 
entire range of cy. In determining the total uncertainty T, we want to be sure 
that it is not augmented by bad data (observational errors). Which combina- 
tion of 9, a*, / B? (Table 1) is most representative of the model for general 
application? For reasons expressed earlier, the TI data-model comparison 
probably indicates a reasonable relationship between model prediction and 
data reality. Because of the uncertainty in the estimates, we can be probably 
assume that B x 1.0, o,, / 9i’ a 0.6, or < log W ’ > a log @ x 0.0, qog w, = 0.3. 

7.5 Acceleration and translation 
In Section 4, equations were developed for the acceleration of the dense cloud 

from rest. These were solved to yield simple expressions for the local cloud 
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speed UC and downwind distance s,. The only calibration constant c3 in the 
drift model was found by comparing the model drift distance to the TI drift 
data. The comparison was made using the ratio method as before, where the 
statistical variable is defined as 4E ((~,/3) = S, ( LY )/S,, (o~,#?). The statistics are 
presented in Table 2 and are plotted in Fig. 6a. The triangles ( A ) result from 
the use of eqn. (41) and show very good agreement with the data. The dots 
( 0 ) result from a simpler equation, s, - - C&t, which assumes that the puff ac- 
celerates instantly to the constant wind speed measured at a 10 m high tower. 

There were two restrictions applied to the choice of TI drift data: 
(i) Twelve trials were used in the selection of peak concentration data. In 

addition, the time of arrival of the cloud centre of mass at the receptor was 
recorded. This was to be the time used for calibrating the model drift distance 
to the receptor distance. However, in three experiments (9,12,17), the con- 
centration traces at the receptor were more highly skewed, making an estimate 

TABLE 2 

Summary of means and standard deviations for N values of the drift ratio 9 ’ = a ( CY$) = S, ( CY) / 
S, ( CV$). (HS = Havens and Spicer, ML= Meroney and Lohmeyer, TI =Thorney Island, 
PD = Porton Down ) 

Data N &+ SW/W <log a’> %g .W 

ML 119 0.91 0.43 -0.101 0.259 
TI 60 1.00 0.15 - 0.005 0.070 
PD 51 1.21 0.46 0.066 0.185 

Figs. 6. The ratio of modelled to observed cloud travel distances for several experiments. In (a), a 
simpler model ia also used, i.e., s, = U,t( l ), in which U, is a constant mean wind speed measured 
at 10 m above ground level. 
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of the centre of mass arrival time more difficult. Hence, these three experi- 
ments were dropped. 

(ii) The second restriction was in the selection of downwind receptors. Only 
those receptors within + 15 degrees of the wind direction were used. 

A further comparison of the modelled drift distance (eqn. 41) with measured 
distances is given in Table 2 and Figs. 6 using the PD and ML data sets. Again, 
because the TI data appear to be superior to the PD data, the normalized stan- 
dard deviation of 0.15 is probably a good measure of the total uncertainty in 
applying eq. (41) for drift estimates over flat terrain. 

7.6 Uncertainty components 
The uncertainty components which are significant in the distribution of 

W (a,/?) are related to the total uncertainty Tas in eq. (61). The uncertainties 
which are important in making error estimates associated with model calcu- 
lations are inherent uncertainty I and model uncertainty M. To establish 1, it 
is necessary to repeat an experiment several times, keeping a! constant. This 
is feasible only for laboratory experiments. The inherent uncertainty I’ for 
fixed a! can be calculated from eqs. (52) or (57); the inherent uncertainty I 
(or I’ ) for all a! can be found from eq. (60). To establish the model error M, it 
is necessary that the observational errors 0 are negligible. We assume that the 
environmental conditions of the HS and ML experiments are well-controlled 
such that 0x0. 

Table 3 contains some results from the HS data in which 34 identical runs 
were repeated. Because the receptor locations r, were not identical for all runs, 
the .number of repetitions N differs for each receptor. The initial conditions 
are V,,=54.1, pJp,=4.19, and Ho/D o = 1. The 10 different receptor locations 
create 10 different a-conditions. The value of $! ( CX) is seen to increase as r, 
increases, signifying a bias which is a function of cy in the model. The value of 
a,, ( CY) also increases with cy. However, the ratio bgpj (a)/%? (CK) varies more 

TABLE 3 

Calculation of the mean and standard deviation of 9 (o$) = C, (a!) /CO (cx$) and of CO (~9) for 
N repetitions of identical initial conditions at various radial receptors r, using the Havens and 
Spicer laboratory data 

Parameter r, (m) 

1.00 1.50 1.80 2.00 2.20 2.40 2.60 2.90 3.50 4.10 

N 24 16 6 18 9 6 18 IO 9 8 
9(a) 0.69 0.84 0.93 1.03 1.21 1.11 1.15 1.21 1.93 1.34 
ckm (a) 0.08 0.10 0.11 0.12 0.25 0.14 0.21 0.25 0.48 0.46 
c&e, (a)/a(a) 0.11 0.12 0.11 0.11 0.20 0.12 0.18 0.21 0.25 0.35 
%(~u)/C,(~) 0.10 0.16 0.11 0.15 0.16 0.14 0.13 0.10 0.19 0.26 
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slowly. We had postulated that this ratio should be a constant, equal to I’ as 
in eq. (57). We will take I’ for the HS data set to be the mean of these 10 
values, i.e., 0.18 + 0.08. A second estimate of I’ for each QI is available directly 
from the measurements as in eq. (52 ) and are printed in the final row of Table 
3. The mean of these values is 0.15 + 0.05. 

We would also like to test the value of eq. (60) in evaluating uncertainty 
components I’, I, and M for the same identical HS runs (assuming 0 = 0). The 
results are shown in Table 4. Note that 1’ is somewhat larger than the previous 
two estimates. The lack of agreement in the estimates of I’ is probably due to 
the gross assumptions that the uncertainty terms are small and that I’ is in- 
dependent of a. 

Meroney and Lohmeyer [ 16 J repeated each experiment five times over on 
the average. For three initial volumes, four non-zero wind speeds, and about 
10 receptors, they tabulate the mean concentration and standard deviation for 
each receptor. Using eq. (52 >, these provide a large number of estimates of I’ 
which are averaged to give 0.25 + 0.12. Using eq. (60), I’ = 0.34. The remaining 
uncertainty estimates are given in Table 4. Uncertainties are larger in the ML 
results possibly because of additional independent variables (x such as non- 
zero winds and molecular effects. 

Note that T in Table 4 differs from as,/9 in Table 1 for the HS and ML 
data. The HS standard deviations differ for two reasons: 
(1) The data used for Table 1 were abstracted by the author from the HS data 

traces for an earlier paper [ 11. They differ slightly from the tabulated peak 
concentrations reported by Havens and Spicer [ 13 ] . In addition, the data 
used for Table 4 is a subset of the latter data set. 

(2 ) It was realized late in the study that the ML concentration data [ 161 were 
measures of ensemble means C, (cu ) rather than single measurements 
Co ( a$). Knowing C, (cu ) and a, (a! ) for 119 ensembles, the additional var- 
iance due to the trc (a) was added to give a larger value of T in Table 4. 

An interesting and possibly coincidental observation from the laboratory 
results is that the relative magnitude of the components I, M, and T within 

TABLE 4 

Summary of the approximate results for inherent uncertainty (I’ and I), model uncertainty (M) , 
observational uncertainty (0)) and total uncertainty (T) in concentration estimates based upon 
the four experimental studies 

Data I‘ I M 0 T 

HS 0.20 0.18 0.30 0.0 0.36 
ML 0.34 0.40 0.60 0.0 0.72 
TI 0.59 
PD 0.96 
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each experiment is the same. They indicate that inherent uncertainty contrib- 
utes 32% of the variance and model uncertainty contributes 68%. 

The full scale atmospheric studies do not allow for repeated identical runs 
to estimate I or M. The only uncertainty statistic available is total uncertainty 
T which is 0.59 for TI data and 0.96 for PD data. On the basis of the 4 studies 
and putting more weight on the TI results than on the PD results, we suggest 
that the dense gas model can be used to predict the ensemble mean and uncer- 
tainty of peak concentrations reasonably well assuming that 9 x 1 and oaI / 
9 = 0.6. 

A further source of error which may arise during applications is input error 
or source uncertainty S. For small uncertainties in source conditions or me- 
teorological variables, S can be found by differentiating the analytical expres- 
sion for concentration. For large uncertainties in initial conditions (as in risk 
assessments), the probability of each initial condition can be estimated. 

8. Summary and conclusions 

(1) Analytical equations for the ensemble mean instantaneous concentra- 
tion within an instantaneously released dense gas cloud are valid within both 
the dense and neutral regimes of the cloud’s lifetime. The correction term a, 
for molecular diffusion within small releases can be ignored. Other factors such 
as mixing height, heat transfer, and presence of aerosols are also ignored. The 
model also calculates cloud height, radius, acceleration, and drift. 

(2) The model provides a smooth transition of all properties from the dense 
regime to the neutral buoyancy regime. Furthermore, there is no localized time 
at which transition occurs; rather, it is very gradual. The timing and conditions 
for transition have been of great concern for many modeling systems consist- 
ing of a separate dense gas box model and a separate Gaussian model. The 
difficulty of such a system can be seen in Fig. 3. Using Ri, = 10” as an example, 
the dashed line to the left of the Gaussian is the dense gas model solution. The 
intersection of the two lines marks the point at which transition would be 
assumed. However, the present model (assumed to be an improvement) sug- 
gests that concentrations remain about an order of magnitude above the Gaus- 
sian and become very slowly asymptotic to it as time progresses. 

(3) The normalized maximum concentration Cb/CO is primarily a function 
of two variables: t/r and Ril. 

(4) The calibration constants have the following values: a, = 1.16, a3 = 0.35, 
cl=0.05, c,=O.5, Ri,=O.l,andc,=0.58. 

(5) The tw o a 1 b oratory studies allowed us to estimate the relative contri- 
butions of inherent and model uncertainties to the total variance within the 
ensemble mean estimate. Although the environmental conditions were quite 
different in each study, as was the total variance T2, the relative contributions 
of I2 and M2 were the same, i.e., 32% and 68% respectively. The relative con- 
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tributions cannot be calculated so directly for field studies. However, because 
the model seems to behave as successfully for large scale as for small scale, we 
suspect that the relative contributions are similar. For model application, in- 
formation on the partitioning of the variance is not required. The relatively 
large inherent uncertainty is possibly one important reason why simple models 
are often as reliable as complex models. 

(6) The ratio method was used to compare modelled and measured concen- 
trations and drift distances. The ratio statistics permit a best estimate of the 
mean and variance of the measured distribution. For general applications in 
the atmosphere, it is suggested that concentration estimates be made using the 
statistical results 99~ 1.0 and a,,/@ z 0.6. The drift model can use 99% 1.0 
and bg2,/ B w 0.15 (TI results of Table 2 ). In order to calculate the probability 
of exceeding given concentrations, it is preferable to assume a normal distri- 
bution of logarithms of concentration ratios In 9’. Using eqs. (63)) or the TI 
results of Table 1, <In 9’ } x 0.0 and oln 99, x 0.6 (or oog w, w 0.3 ). 
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